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Abstract: Watersheds are often degraded by human activities, reducing their ability to provide
ecosystem functions and services. While governmental agencies have put forward plans for improv-
ing watershed health, resources are limited, and choices must be made as to which watersheds to
prioritize and what actions to take. Prioritization tools with sufficient specificity, resolution, and
automation are needed to guide decisions on restoration and management actions across large scales.
To address this need, we developed a set of tools to support the protection of streams and associated
riparian habitats across the state of California. We developed and tested watershed condition esti-
mation models based on bioassessment data, used the EPA’s StreamCat dataset to identify stressors,
incorporated environmental justice factors and developed reach-specific models to prioritize actions.
We applied the prioritization tools statewide and were able to identify 18% of stream reaches that are
in good condition but that are most vulnerable to existing stressors and an additional 19% of stream
reaches that are degraded and are highest priority for restoration and management. The remaining
63% of stream reaches were prioritized for protection and periodic monitoring or minor remedial
actions. The results of this project can help regional stakeholders and agencies prioritize hundreds
of millions of dollars being spent to protect, acquire, and restore stream and riparian habitats. The
methods are directly transferable by using any regional condition and stress data that can be readily
obtained.

Keywords: watershed planning; bioassessment; CRAM; StreamCat; environmental justice; spatial
extrapolations

1. Introduction

Streams and riparian areas provide a range of ecosystem services, including habitat for
diverse plants and animals, mitigation of the effects of climate change, carbon sequestration,
and improved water quality [1]. In addition, they help protect and improve water quality in
downstream coastal lagoons, estuaries, and the ocean [2]. Integral to the health of riparian
areas are the health of their watersheds, the land areas that drain to the waterbodies.
Thus, many state and regional watershed management programs aim to establish healthy
watersheds as a way of protecting streams and riparian zones [3].

Watershed protection benefits biological and human communities, as healthy water-
sheds provide clean water, healthy ecosystems and habitats, recreational opportunities, and
climate resilience. Healthy watersheds also provide the economic benefits associated with
the former, including reduced costs for treating drinking water, restoration efforts, and
damage from climate change, and revenue from recreation and eco-tourism and increased
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property values [4]. The services that healthy watersheds provide are often very difficult
and expensive to replicate once they have been disrupted.

Despite the ecological and economic value of healthy watersheds, they are often
degraded due to human activities, including development, pollution, recreation, flow
alterations, overfishing, and introduction of non-native species [5–8]. In fact, freshwater
systems have been shown to be amongst the most threatened globally [9]. While gov-
ernment agencies have acknowledged the need to protect and restore watersheds, such
work is expensive [10] and agencies work with a limited budget; therefore, the need to
prioritize certain watersheds and certain management or restoration activities over others
is crucially important. Statewide assessments typically produce results at the scale of
distinct hydrologic units defined by topography and hydrology (often termed HUC-12
in the United States), making them useful for prioritizing watersheds, but less useful for
prioritizing actions within watersheds at the stream reach scale. Currently, there is a lack of
integrated tools to aid in prioritization of actions within defined drainages in a timeframe
and at a scale commensurate with local decisions. Such tools would help ensure that re-
sources are allocated effectively to enhance riparian condition, improve overall watershed
functions, and restore downstream beneficial uses (defined as the resources, services, and
qualities provided by aquatic systems).

Many physical, ecological, and social considerations should factor into prioritization.
Factors that affect condition, stress, risk, and potential benefits must also be considered.
Often, this can be a time-consuming, manual process that involves extensive analysis.
Because of the time and resources needed, prioritization efforts often only take place where
agencies have sufficient motivation and resources. For example, several municipalities in
California have created watershed protection plans that aim to make these prioritization
decisions. The Water Quality Improvement Plan for the San Diego River Watershed
Management Area (2016) aims to “protect, preserve, enhance, and restore water quality and
beneficial uses” through a watershed-based approach. The involved agencies developed a
list of priority water quality conditions as well as water quality improvement goals and
strategies to address these conditions in the watershed. However, such plans often rely on
locally developed tools and approaches which involve substantial time and resources to
develop. Standardized prioritization tools can be helpful in addressing this issue across
broader geographies, as they can significantly reduce the time and effort expended. To be
useful, however, decision tools require sufficient specificity, resolution, and automation to
guide prioritization decisions and implementation of restoration and management actions
across regional or statewide scales. Several recent efforts have made progress in producing
prioritization tools to inform local restoration and management decisions as described in
Table 1. While these tools are useful, they each have their shortcomings either in ease of
use, scale, or specificity.

Table 1. Examples of other prioritization tools to inform watershed restoration and management decisions.

Tool Description

Puget Sound Watershed
Characterization Project

A coarse-scale tool that prioritizes certain areas for protection and
restoration efforts and identifies appropriate actions.

EPA’s Watershed Management
Optimization Support Tool

An Excel-based tool that screens practices for cost-effectiveness in
achieving watershed management goals.

Riparian Condition Assessment Tools An ArcGIS python toolbox that remotely assesses the condition of
riparian and floodplain areas over large spatial scales.

Designing Sustainable Landscapes
A modeling framework to simulate landscape change, assess the
ecological impact, and design conservation strategies. Its approach
includes no consideration of socio-cultural and economic factors.

EPA’s Downloadable RPS Tools for
Comparing Watersheds

Excel-based datasets that allow for watershed comparison and
prioritization at the HUC 12 scale.

In this project, we developed and demonstrated a statewide tool to support prioritiza-
tion of recommended actions at a stream reach scale that can be used to guide plans aimed
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at restoring healthy watersheds and ultimately protecting rivers and riparian habitats
across California, USA. Watershed health is defined as the degree to which a watershed
can provide ecosystem services while maintaining functional and structural components
essential to sustaining the physical and chemical interactions necessary to support charac-
teristic habitats and biodiversity [11]. We aimed to create a watershed prioritization tool
that has broad applicability, relies on readily available datasets, is easy to use, and focuses
on the stream reach scale, which is where most decisions are made. The tool is designed
to be most useful in areas that lack intensive field observations and to supplement field
observations where they exist. We demonstrate the application of this new tool on six pilot
watersheds in California that cover a range of settings and dominant land uses: the San
Lorenzo River, Salinas River, and Santa Maria River watersheds in central California, and
the Ventura River, San Juan Creek, and San Diego River watersheds in southern California.

2. Materials and Methods

Prioritization of protection, restoration, and management actions was based on a set
of rules and analysis that use datasets that are readily available and applicable across
broad, diverse spatial scales, and thus could be applied almost anywhere. The analysis
was conducted at the National Hydrography Dataset (NHD; https://www.usgs.gov/core-
science-systems/ngp/national-hydrography, (accessed on 8 September 2020) [12]) reach
scale and consisted of four steps (Figure 1): (1) condition was assessed based on modeled
scores for commonly used bioassessment indices, (2) stress and vulnerability were evaluated
using catchment-scale metrics available from the USEPA StreamCat dataset (https://www.
epa.gov/national-aquatic-resource-surveys/streamcat (accessed on 23 March 2022 [13]),
(3) potential protection, restoration, or management actions were identified based on
the StreamCat stressors that were most affecting condition, and (4) stream reaches were
prioritized based on opportunities to leverage ongoing watershed management actions
and based on areas where actions would benefit communities currently affected by high
pollution and environmental degradation burdens. It is important to note that NHD reaches
are automatically determined based on catchment and drainage network features and are
therefore not uniform in length. An underlying assumption is that they are hydrologically
homogenous and therefore an appropriate unit of analysis.
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sites with low stress should be protected and monitored. Degraded sites where median stress values
did not exceed thresholds should be monitored and investigated for other stressors.

2.1. Condition Assessment

Stream reach condition was categorized as being either intact or degraded based on
four indices commonly used in California’s surface water ambient monitoring program:
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the California Stream Condition Index (CSCI [14]), the Algal Stream Condition Index
(ASCI [15]), and the biotic structure and physical structure attributes from the California
Rapid Assessment Method (CRAM [16]). The CSCI and ASCI apply to perennial and
intermittent streams, whereas CRAM applies to all streams regardless of their flow duration
class. All indices assess condition relative to reference conditions, so a “good” score
indicates proximity to reference condition vs. complete absence of stress.

The CSCI is a biological index that assesses the condition of perennial wadeable
streams using benthic macroinvertebrate communities. The CSCI combines an observed-
to-expected (O/E) index and a multimetric index (MMI). Developed to include a broad
reference dataset and provide statewide applicability, the CSCI is anchored to a benchmark
of biological expectation that is appropriate for the range of natural environmental con-
ditions at each assessment site. The possible range of scores for the CSCI is 0 to 1.0, with
lower scores indicative of a greater deviation from expectations at minimally impacted
reference sites.

The ASCI is another MMI to evaluate stream condition in California, with this one
using algae assemblages. It responds to a wide variety of stressors and is particularly
responsive to changes in water quality. The hybrid MMI from Theroux et al. [15] was used
in this study, which incorporates both diatom and soft-bodied algae assemblages. The
possible range of scores for the ASCI is 0 to 1.0 (most to least impacted).

CRAM is comprised of four attributes, buffer and landscape context, hydrology,
physical structure, and biological structure, which can be aggregated into an overall index
score. The buffer and landscape context and hydrology attributes assess attributes of stress
or features that mediate stress whereas the physical and biological structure attributes
assess the actual structure and condition of the stream reach. Therefore, only the latter two
attributes were used as part of our assessment of stream reach condition.

The CRAM physical structure attribute is based on two metrics, including a measure of
the structural patch richness (the number of different types of physical surfaces or features
that may provide habitat for aquatic, wetland, or riparian plant and animal species), and a
measure of the topographic complexity (the spatial arrangement and interspersion of micro-
and macro-topographic relief present within the channel that affects moisture gradients
or that influence the path of flowing water). The possible scores for the physical structure
attribute range from 25 to 100 (most to least impacted).

The CRAM biotic structure attribute is based on three metrics: plant composition
(composed of the number of plant height layers, the number of co-dominant plant species,
and the percent of co-dominant plant species that are classified as invasive), horizontal
interspersion and zonation (the variety and interspersion of distinct plant zones), and
vertical biotic structure (the degree of overlap among plant layers). The possible scores for
the biotic structure attribute range from 25 to 100 (most to least impacted).

Stream condition assessment was expanded to the entire drainage network, beyond
those stream reaches where field-based monitoring data were available by using random
forest analyses to predict state-wide condition scores. A random forest model is machine
learning algorithm that build a collection of decision trees to predict an output based on a
series of explanatory input variables in order to achieve output consensus across trees while
avoiding model overfitting. Random forest models are commonly used to predict attributes
across broad spatial scales using relationships derived from existing data. When developed
with sufficient data density they are an efficient way to develop predictions for unmonitored
locations across a landscape. The downside of random forest modeling is that their accuracy
may be lower than methods such as boosted regression analysis and they are frequently
accused of being “black box” methods because they produce predictions with minimal model
configuration. In this instance, random forest is an appropriate approach for determining
stream condition across the entire state of California and is reliable given that the models are
based on data from a statewide monitoring program with broad spatial coverage.

Existing condition index data and the StreamCat stressors important to the condition
index scores were used for the analysis. Using a set of training data, ranging from 613 stream
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reaches for CRAM attributes to 1516 reaches for CSCI and ASCI (based on available
data), we established a model containing landscape parameters and then validated the
model using a testing dataset one-third the size of the training dataset. Both training
and testing datasets contained data for independent (i.e., landscape) and dependent (i.e.,
index) variables. Once the model was established, a larger dataset containing landscape
data for the entire state of California was used to predict index scores and to determine
stream condition. All model creation was performed using R Statistical Software (v. 4.1.2)
and RStudio (v. 1.4.1117), and scripts used to generate random forest modeling results
are publicly available (see the Healthy Watershed Random Forest GitHub Repository). Using
the finalized list of predictor variables, we created a random forest model with 500 trees
using the “randomForest” function in the randomForest package [17]. Dataset manipulation
and figure creation not addressed by the packages cited below were performed using the
tidyverse and tidymodels packages [18,19].

To create the full model dataset, condition index and StreamCat variable data were
bound according to COMID numbers, and one instance of each COMID was extracted,
ensuring that all StreamCat records for every COMID were complete. Calibration (training)
and validation (testing) datasets were created by splitting the dataset of unique COMIDs
75:25, with stratification performed by state ecoregions (PSA [20]). To determine the
sparsest model that explained the greatest variance in the index data, we performed
recursive feature elimination using the “rfe” function in the caret package [21]. Then, using
the “pickSizeTolerance” and “pickVars” functions, we performed variable selection and
determined the model size with the smallest number of predictor variables within 1% of
the best model for each index.

Models were validated by first visually inspecting variable importance and node purity
plots. To examine predictive accuracy and bias by sampling region, training and testing
index scores were predicted using the finalized random forest model results. Predicted
scores were plotted against raw scores, and regressions of predicted versus raw scores were
performed for the overall dataset as well as by PSA region. Additionally, we calculated
root mean square error values for the predicted training and testing scores to assess the
likelihood of overfitting. After determining the model structure and validating model
prediction using the training and testing datasets, we predicted condition index scores for
all stream reach common identifiers (COMIDs) in the StreamCat California dataset.

The 10th percentile of normalized index scores from reference sites [20] for each index
was used as a threshold to differentiate intact and degraded conditions. For CSCI, the
threshold came from Mazor et al. [14] (CSCI = 0.79), while the ASCI threshold came from
Theroux et al. [15] (ASCI = 0.86). The thresholds for the biotic structure and physical
structure attributes (CRAMbiotic = 55 and CRAMphysical = 66, respectively) were calculated
from statewide, riverine, non-ephemeral reference streams in the EcoAtlas database (https:
//www.ecoatlas.org/regions/ecoregion/statewide?cram=1 accessed on 11 January 2021)
and additional reference site data from Fong et al. [22]. Stream reaches where any single
index score failed to achieve its respective threshold were categorized as having a degraded
condition. Reaches were considered to be of intact condition if all four index scores achieved
their respective threshold.

2.2. Stress Ratings

Landscape-based stressors can be associated with degradation of poor condition
streams and vulnerability of intact condition streams, and the type of stressor present can
influence specific management actions that may be required to protect, restore, or manage
a stream reach.

Stress ratings were based on the StreamCat dataset (https://www.epa.gov/national-
aquatic-resource-surveys/streamcat (accessed on 23 March 2022) [13]). This national
dataset contains both natural (e.g., soils and geology) and anthropogenic (e.g., urban
areas and agriculture) landscape information readily available for over 140,000 stream
reaches throughout California and reflects human influence on the landscape at the reach,

https://www.ecoatlas.org/regions/ecoregion/statewide?cram=1
https://www.ecoatlas.org/regions/ecoregion/statewide?cram=1
https://www.epa.gov/national-aquatic-resource-surveys/streamcat
https://www.epa.gov/national-aquatic-resource-surveys/streamcat
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catchment, and watershed scales. Other projects have used the StreamCat dataset for
prioritization as well, including Hill et al. [13] and Flotemersch et al. [11]. Stressors that
were most important to the distribution of condition index scores were identified using
recursive feature elimination (RFE), conducted using 44 metrics in the StreamCat dataset
and condition index scores from the Stormwater Monitoring Coalition regional stream
monitoring database (SMC, https://smc.sccwrp.org/ (accessed on 23 March 2022)). Stream
condition may also be affected by stressors not represented in StreamCat, such invasive
species, wildfires, groundwater extraction or excessive grazing. These stressors were not
included in the analysis but should be considered as part of the local decision making
process.

Stressors that were most likely affecting stream condition on a reach-scale basis were
determined based on linear regressions between individual stressors and each of the four
condition index scores. The 10th percentile condition indicator thresholds were used to
calculate corresponding stressor values from the regression equations, resulting in four
threshold values for each stressor (corresponding the stress-response relationship with each
condition index). The overall stress threshold was calculated as the median of these four
values. While we considered using the most restrictive value or the majority value (e.g., the
third highest value out of four calculations), the project’s Technical Advisory Committee
concluded that the median (which was usually equivalent to the majority value) is the most
appropriate value to use as the threshold. These thresholds were then applied to StreamCat
data across California to identify elevated stress levels at each stream reach. It is important
to note that the National Land Cover Dataset was used in both the reference model for the
CSCI and ASCI and for the stressor indices derived from StreamCat. Regardless, the risk of
circularity is low because the land use data are used in different ways in the two analyses,
and StreamCat considers a much broader set of stressors than those used in development
of the condition indices.

2.3. Determination of Recommended Actions

Recommended management actions were identified through a sequential process that
used both the overall condition of a stream reach and the level of stress (Figure 1). Each
stream reach was first assessed for an overall condition rating of the four condition indices,
comparing predicted index values to their respective 10th percentile threshold. Reaches
were considered to be of intact condition if all four index scores were above their respective
threshold. Reach condition was categorized as degraded if any single index score exceeded
its respective threshold. This approach was similar to that used by Beck et al. [23] for the
Stream Quality Index.

The next step in the process was to compare stream reach stressor levels with their
respective threshold and identify recommended actions for those stressors that were ele-
vated. Categories of recommended actions depended on whether the reach condition was
intact or degraded. Stressor levels that are below their respective threshold do not elicit a
recommended action. Elevated stressor levels at intact stream reaches have the capacity to
degrade stream condition, and therefore recommended actions to reduce that possibility
are categorized as “risk reduction.” For degraded condition sites, elevated stressors elicit
either “restoration” or “management” actions, depending on the type of stressor evaluated
(Table 2). Restoration actions involve modifying the physical or biological structure of the
stream and/or floodplain to improve its ability to provide habitat and support ecosystem
functions. Management actions involve reducing stressors (or the effect of stressors) in or
adjacent to the stream or in the catchment. Management recommendations at the stream vs.
catchments scale depend on the specific stressor but reach-scale recommendations consider
the setting of the reach within the catchment to help ensure continuity in management
actions. Similar stressor reduction actions at intact condition sites would constitute “risk
reduction”. Intact streams with low levels of stress are considered to have low vulnerability
and were therefore categorized for “protection” and periodic monitoring.

https://smc.sccwrp.org/
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Table 2. Recommended action matrix. “X” indicates the recommended action category is relevant to the stressor, and shaded boxes indicate priority actions (yellow
= Risk Reduction Priority, green = Restoration Priority, and blue = Management Priority).

Major Stressors
Recommended Action Categories

Specific Type of Action
Protection Restoration Management

Soil erodibility on agricultural land (catchment or
watershed) X X X

buffers and upland revegetation plus BMPs (BMPs are Best
Management Practices, typically to control excessive runoff, sediment,
or pollutants) to reduce sediment input to streams

Canal, ditch, or pipeline density (watershed) X tributary restoration to daylight channelized streams and improved
infiltration

Biological nitrogen fixation from cultivation of crops
(watershed) X X X buffers and runoff control and BMPs to reduce nitrogen input and

reduce eutrophication
Dam density (watershed), based on National Inventory of
Dams (where possible, modified dam operation should also
be included as a management measure)

X X X channel and flood plain restoration along with flow management to
remedy hydromodification effects

Synthetic N fertilizer application to agricultural land
(watershed) X X X buffers and runoff control and BMPs to reduce nitrogen input and

reduce eutrophication
Mine density (watershed) X X X buffers and runoff control to reduce input of contaminants to streams

Agriculture (catchment or watershed) X buffers and runoff control and BMPs to reduce input of sediment and
contaminants to streams

Agriculture (within 100 m buffer of streams) X X X floodplain restoration and levee removal to enhance stream function
and habitat connectivity

Imperviousness (catchment within 100 m buffer of streams) X X X channel restoration with buffers and runoff control to remedy
hydromodification and floodplain encroachment

Urbanization (catchment) X X runoff management and BMPs to reduce sediment and contaminant
input to streams

Urbanization (within 100 m buffer of streams) X X X floodplain restoration and levee removal to enhance stream function
and habitat connectivity

Road–stream intersections (catchment or watershed) X X X culvert retrofit to improve sediment flux, flow, and biological
passage/connections

Road density (catchment or watershed) X X X runoff management and BMPs to reduce hydromodification and
contaminant input to streams
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Specific restoration or management actions associated with each stressor were devel-
oped in coordination with a Technical Advisory Committee of statewide agency, academic,
and private sector experts, specializing in watershed management and stream rehabilitation.
These actions serve as examples of actions (or categories of actions) that can help restore or
protect overall watershed health and are not intended to be prescriptive or to exclude other
potential actions determined by local watershed stewards and stakeholders. Restoration
actions typically involve physical rehabilitation of the stream channel or floodplain, while
management actions tend to focus on runoff or flow management. For example, the recom-
mended action for elevated stream channelization is stream habitat restoration, while the
recommended action for elevated levels of urbanization includes runoff management. The
recommended action categories are mutually exclusive among stressors, so that a stressor
can be associated with a restoration or management action, but not both. On a stream reach
basis, however, stressors are evaluated independently from each other. It is possible to
have both restoration and management actions apply at a given degraded stream reach.

2.4. Stream Reach Prioritization
2.4.1. Prioritization Based on Existing Opportunities

In watersheds subject to high levels of stress, multiple stream reaches are often iden-
tified for recommended action. Prioritizing stream reaches can help guide decisions of
resource allocation. This was accomplished by consulting existing long-term environmental
planning documents. Regional conservation plans, habitat conservation plans, and wa-
tershed plans were identified where preservation and restoration projects had previously
been proposed in California. These included Special Area Management Plans (SAMPs) and
Master Plans (both from U.S. Army Corps of Engineers), Natural Community Conservation
Plans/Habitat Conservation Plans (NCCPs/HCPs, from the California Department of Fish
and Wildlife), and Integrated Regional Water Management Plans (IRWMPs) and stormwa-
ter permit watershed management plans (e.g., Water Quality Improvement Plans and
non-point source runoff plans), produced by collaborating regional partner agencies such
as municipalities, water districts, wastewater authorities, watershed protection districts,
Tribes, and non-governmental organizations. See Supplemental Material S2 for additional
information regarding resources consulted for each pilot watershed. Stream reaches iden-
tified in these plans were rated as higher priority because management actions in those
locations have the potential to meet multiple program objectives and provide opportunities
for cost leveraging.

2.4.2. Prioritization Based on Environmental Justice Considerations

Opportunities for prioritization based on environmental justice considerations were
based on relationships between pollution and demographic indicators and stream condi-
tion indices using the California Communities Environmental Health Screening Tool 3.0
(CalEnviroScreen, https://oehha.ca.gov/calenviroscreen (accessed on 23 March 2022)).
CalEnviroScreen is a statewide screening tool that incorporates science-based data to gen-
erate the census tract-scaled Pollution Burden and Population Characteristics scores. The
Pollution Burden scores are calculated from data including exposures and environmental
effects, while the Population Characteristics scores are calculated from data including
sensitive populations and socioeconomic factors. The components include indicators as
shown in Table 3.

Census tracts were ranked from lowest to highest based on each indicator’s raw val-
ues. These rankings were then converted to percentiles. To obtain a score for Pollution
Burden, the average of the seven exposure percentiles’ indicators and the average of the five
environmental effect percentiles were combined. Due to direct exposure to pollution influ-
encing people more than their proximity to environmental effects, the environmental effects
indicators were half-weighted. To obtain a score for Population Characteristics the average
of three sensitive population indicators and the average of the five socioeconomic factors
were combined. Both the Pollution Burden score and Population Characteristics score were

https://oehha.ca.gov/calenviroscreen
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divided by ten to produce a score ranging from 0 to 10. The overall CalEnviroScreen score
is calculated by multiplying the Pollution Burden and Population Characteristics scores.

Table 3. CalEnviroScreen indicators from: California Office of Environmental Health Hazard Assess-
ment [24]. https://oehha.ca.gov/calenviroscreen/scoring-model (accessed on 23 March 2022).

Pollution Burden Population Characteristics

Exposures Sensitive Populations

Ozone Concentrations Asthma-related emergency room visits
PM 2.5 Concentrations Cardiovascular disease emergency room visits
Diesel PM Emissions Low-birth-weight infants
Pesticide Use
Toxic Releases
Traffic Density
Environmental Effects Socioeconomic Factors

Cleanup Sites Educational Attainment
Groundwater Threats Low Income Households
Hazardous Waste Poverty Index
Impaired Waterbodies Unemployment
Solid Waste Sites

Results from the CalEnviroScreen analysis were merged with the stream reach and
watershed data used in the condition and stress analysis using the ArcGIS Spatial Join tool.
This allowed a Pollution and Population score to be assigned to intact versus degraded
sites. A logistic regression model was created using the CalEnviroScreen and the stream
condition data (intact or degraded). Modeling the data failed to produce any significant
relationship that would allow for a threshold to be established. We concluded that the
lack of a significant relationship was because stream condition and pollution burden were
assessed based on different indicators that are responsive to different drivers. Therefore,
we adopted an alternative approach to identify priority areas based on environmental
justice considerations. We calculated the percent of stream reaches in census tracts with
the upper 10th, 20th and 30th percentile of Pollution Burden scores. Thresholds were
calculated on a watershed basis using normally distributed data, weighted by the number
of stream reaches contained within each census tract. Possible Pollution Burden scores
range from 0 to 100 (lowest to highest pollution, CalEPA and [24]). For stream reaches
that crossed census tract boundaries, reaches were assigned to the census tract with the
longest portion of the reach (i.e., each reach was assigned to only one census tract). The
10%, 20%, and 30% threshold resulted in 2%, 13%, and 31% of the stream reaches being
prioritized, respectively. The upper twentieth percentile was selected as the prioritization
threshold because it provided reasonable discriminatory power compared to the other
thresholds based on consultation with the project’s Technical Advisory Committee. The
20% threshold calculated for each watershed was used to identify census tracts that had
elevated Pollutant Burden scores, thereby providing additional information that could be
used to help prioritize the recommended actions.

2.5. Applying the Prioritization Process to Pilot Watersheds

The watershed prioritization approach was applied to six watersheds in California
to help test assumptions about the automated process. The six watersheds (from north to
south) included the San Lorenzo River, Salinas River, Santa Maria River, Ventura River,
San Juan Creek, and San Diego River watersheds (Figure 2). The upstream portion of each
watershed begins in mountains or foothills with maximum elevations ranging from 985 to
2650 m above sea level and discharges to the Pacific Ocean. These watersheds were selected
because they represent a mix of economically important land use types, a range of sizes
(from 343 km2 for the San Lorenzo River watershed to 11,603 km2 for the Salinas River
watershed), a range of development (from 0.9% urban for the Salinas River Watershed to

https://oehha.ca.gov/calenviroscreen/scoring-model
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19.4% urban for the San Juan Creek Watershed) and the project team has ongoing projects
in these watersheds. The Salinas River watershed outline included the Tembladero Slough.
Testing included comparing the recommended actions in these watersheds with aerial
imagery, National Land Cover Database maps [25], and past knowledge of the watersheds’
predominant stressors, land use types, and geographies.
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Figure 2. Location of the six test watersheds used to ground truth the watershed prioritization
methods.

3. Results
3.1. Condition Assessment
3.1.1. Model Development

The final random forest model built for CSCI explained 52.4% of the variance and
included twenty parameters of stress indicators. The final random forest model built for
ASCI explained 41.9% of the variance and included twenty parameters of stress indicators.
The final random forest models built for the CRAM biotic and physical structure indices
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explained 32.3% and 53.3% of the variance, respectively. The model for biotic structure
included ten parameters while the model for physical structure included twenty parameters.
Table S1 provides a list of all stressors evaluated in the random forest modeling.

The 10 stressors shared by all four models (CSCI, ASCI, biotic, and physical structure)
were dominated by land cover indicative of human perturbation and road density. The
stressors all four models had in common included percent of impervious land cover both
within the watershed and the catchment within 100 m of the stream area, percent of
urban land cover both within the watershed and within 100 m of the stream area in the
catchment, road–stream intersections in the watershed, and road density in the watershed
and catchment, and within 100 m of the stream area in the catchment. Six stressors were
important to only one condition index. Specifically, canal, ditch, or pipeline as well as
mine density in the watershed were parameters only in the CSCI model. Soil erodibility
on agricultural land in the catchment and agriculture in the watershed were parameters
only in the physical structure model. The two dam density parameters (based on National
Anthropogenic Barrier Dataset and based on National Inventory of Dams) were important
parameters only in the ASCI model. Ranked importance of stressor variables for all models
are provided in Figures S1, S3, S5 and S7.

Root mean square error (RMSE) values were calculated for both training and testing
datasets after model creation to evaluate the likelihood of overfitting. For the CSCI model,
RMSE values were 0.08 and 0.18 for the training and testing datasets, respectively. For the
ASCI model, RMSE values for the training and testing datasets were 0.07 and 0.17. The
RMSE values for the biotic structure model were 7.39 and 15.34 while the RMSE values
for the physical structure model were 6.40 and 14.36, for the training and testing datasets,
respectively. All values were similar enough between testing and training datasets that
we felt confident in our model fits and proceeded with extrapolation of condition indices
state-wide.

The performance of the random forest models was further evaluated by comparing
measured and predicted values for both training and testing datasets (Table 4). Additional
details regarding measured and predicted values according to PSA region are available in
Figures S2, S4, S6 and S8. Overall, when comparing measured and predicted values for
all four conditions indices statewide, the random forest models performed well. When
results were separated by region, the South Coast region routinely performed the best of all
regions, likely due to higher data density; this trend was particularly apparent for both the
CRAM biotic and physical structure indices. However, each condition index performed
least well in a different region of the state. The models for the ASCI, CSCI, and the CRAM
biotic structure indices performed least well in the Desert (Modoc) region, and the model
for the CRAM physical structure condition index performed least well in the North Coast
region. These regions were less well sampled and therefore had less-rich datasets with
which to train the model (Table S3).

Table 4. Results for linear regression models comparing measured versus predicted scores of the full
training and testing datasets used for all four indices.

Condition Index Dataset R2 Slope Slope p-Value Intercept Intercept p-Value

CSCI Training 0.52 1.00 <0.0001 0.001 0.95
CSCI Testing 0.54 1.05 <0.0001 −0.05 0.19
ASCI Training 0.42 0.98 <0.0001 0.015 0.63
ASCI Testing 0.39 1.01 <0.0001 −0.011 0.85
Biotic structure Training 0.32 0.94 <0.0001 3.85 0.30
Biotic structure Testing 0.30 0.85 <0.0001 10.21 0.10
Physical structure Training 0.53 1.00 <0.0001 −0.27 0.92
Physical structure Testing 0.47 0.85 <0.0001 11.09 0.01
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3.1.2. Statewide Condition Scores

Most of the statewide stream reaches were identified as “intact” condition (71%),
representing 99,003 stream segments in California. ASCI and CSCI tended to be the most
sensitive indices (degraded at 25% and 18% of stream reaches, respectively), while physical
structure and biotic structure appeared to have lower overall sensitivities (degraded at
14% and 2% of stream reaches, respectively). Patterns in predicted condition index scores
showed disturbance associated with urbanization (e.g., greater Los Angeles, San Diego,
and San Francisco Bay metropolitan areas) and agriculture (e.g., San Joaquin and Sacra-
mento Valleys) (Figure 3). In general, the CRAM biotic structure attribute resulted in less
discrimination among sites than the other indices.
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Figure 3. Predicted condition index results based on random forest model outputs for statewide
stream reaches in California. Panels (A–D) refer to the ASCI, CSCI, CRAM biotic structure, and
CRAM physical structure indices, respectively. For each index, stream reaches were classified as
“degraded” if the normalized index score was less than the 10th percentile value from reference sites.

3.2. Stress Evaluation and Recommended Management Actions

All 24 of the StreamCat-derived stressors associated with stream condition were found
to be elevated in at least a portion of stream reaches. Thresholds associated with poor
index scores for individual stressors (based on the regression models) varied and not every
stressor was associated with every condition index (Table 5). The number of stream reaches
statewide affected by each stressor (based on the thresholds in Table 5) ranged from 2 to
17%, with road–stream intersections being the most prominent stressor, followed by dam
density (Table 6).
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Table 5. Stressor thresholds for each stressor–condition index pair based on regression models. The median value was used as the final threshold. Zeros indicate that
any level of the stressor impacts the condition index; mathematically, these indicate a negative value was produced through the linear regression analysis. Blanks
indicate the StreamCat stressor was not important to the condition index. Catchments typically encompass larger areas that capture and consolidate runoff vs.
smaller watersheds which are defined by local topography.

Stressor Stressor Description CSCI-Derived
Threshold

ASCI-Derived
Threshold

Biotic-Derived
Threshold

Physical-Derived
Threshold

Median
Threshold

AgKffactCat Soil erodibility on agricultural land (catchment), unitless Kf factor 0.028 0.028
AgKffactWs Soil erodibility on agricultural land (watershed), unitless Kf factor 0.010 0 0.011 0.010
CanalDensWS Canal, ditch, or pipeline density (watershed), km/square km 0.039 0.039
CBNFWs Biological nitrogen fixation from cultivation of crops (watershed), kg N/ha/year 1.2 0 1.4 1.2
DamDensWs Dam density (watershed), based on National Inventory of Dams, dams/square km 0 0
FertWs Synthetic N fertilizer application to agricultural land (watershed), kg N/ha/year 13.1 0 6.5
MineDensWs Mine density (watershed), mines/square km 0.006 0.006

NABD_DensWs Density of dams (catchment), based on National Anthropogenic Barrier Dataset,
dams/square km 0 0

PctAgCat % Agriculture (catchment) 9.1 9.1
PctAgWs % Agriculture (watershed) 2.9 0 3.4 2.9
PctAgWsRp100 % Agriculture (watershed, within 100 m buffer of streams) 2.8 0 3.2 2.8
PctImp2011Cat % Imperviousness (catchment) 9.6 0 29.3 12.0 10.8
PctImp2011CatRp100 % Imperviousness (catchment, within 100 m buffer of streams) 9.3 0 27.1 11.7 10.5
PctImp2011Ws % Imperviousness (watershed) 5.9 0 22.3 8.0 7.0
PctImp2011WsRp100 % Imperviousness (watershed, within 100 m buffer of streams) 5.6 0 20.7 7.5 6.5
PctUrbCat % Urbanization (catchment) 23.9 4.9 27.6 23.9
PctUrbCatRp100 % Urbanization (catchment, within 100 m buffer of streams) 26.1 5.9 62.4 29.6 27.8
PctUrbWs % Urbanization (watershed) 16.0 0.6 47.6 19.5 17.8
PctUrbWsRp100 % Urbanization (watershed, within 100 m buffer of streams) 17.0 1.6 20.0 17.0
RdCrsCat Road–stream intersections (catchment), crossings/square km 2.3 2.3
RdCrsWs Road–stream intersections (watershed), crossings/square km 0.80 0.21 2.40 0.92 0.86
RdDensCat Road density (catchment), km/square km 3.7 1.3 7.9 4.0 3.8
RdDensCatRp100 Road density (catchment, within 100 m buffer of streams), km/square km 3.8 1.3 8.1 4.1 4.0
RdDensWs Road density (watershed), km/square km 2.6 0.8 6.4 3.0 2.8
RdDensWsRp100 Road density (watershed, within 100 m buffer of streams), km/square km 2.7 0.8 3.0 2.7
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Table 6. Number and percent of statewide stream reaches affected by each stressor. Stressor defini-
tions are as shown in Table 5.

Elevated Stressor Number of Reaches Percent of Total Reaches

Road–stream intersections (watershed) 24,146 17.4
Dam density (watershed), based on National Inventory of Dams 18,754 13.5
Density of dams (catchment), based on National Anthropogenic Barrier
Dataset 17,184 12.4

Road density (watershed, within 100 m buffer of streams 14,923 10.8
Biological nitrogen fixation from cultivation of crops (watershed) 14,543 10.5
Soil erodibility on agricultural land (watershed) 14,521 10.5
Agriculture (watershed, within 100 m buffer of streams) 14,302 10.3
Soil erodibility on agricultural land (catchment) 13,610 9.8
Agriculture (watershed) 13,422 9.7
Agriculture (catchment) 12,926 9.3
Road density (watershed) 12,883 9.3
Synthetic N fertilizer application to agricultural land (watershed 12,788 9.2
Canal, ditch, or pipeline density (watershed) 10,930 7.9
Road–stream intersections (catchment) 10,805 7.8
Road density (catchment, within 100 m buffer of streams) 10,768 7.8
Road density (catchment) 10,567 7.6
Urbanization (watershed, within 100 m buffer of streams) 7813 5.6
Urbanization (catchment, within 100 m buffer of streams) 7810 5.6
Urbanization (catchment) 7446 5.4
Urbanization (watershed) 6414 4.6
Imperviousness (catchment, within 100 m buffer of streams) 5817 4.2
Imperviousness (catchment) 5288 3.8
Imperviousness (watershed, within 100 m buffer of streams) 4881 3.5
Imperviousness (watershed) 4781 3.4
Mine density (watershed) 1414 1.0

A unified stressor threshold was necessary to determine which management action to
prioritize for each stream reach based on the associations shown in Table 2. Of the three
options evaluated (any threshold exceeded, the majority of thresholds exceeded, or the
median threshold exceeded), the median threshold and majority thresholds resulted in
the similar discriminatory power. However, the project’s Technical Advisory Committee
recommended that the median threshold would be more readily interpretable by managers
and therefore it was selected.

Using the median threshold, 9.4% of the State’s stream reaches were recommended
for risk reduction actions. These areas were often concentrated in upper watershed areas
whereas stream reaches tended to be clustered at the interface between natural and urban
or agricultural areas, where stress levels (and therefore vulnerability) are higher. An
additional 4.0% of stream reaches were recommended for restoration alone, 5.8% for some
type of management, and 18.3% for both restoration and management, based on multiple
important stressors (Figure 4). Statewide, 62.5% of the stream reaches were determined to
be intact and subject to relatively low levels of stress. These streams should be prioritized
for protection and periodic monitoring (Figure 4).
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Figure 4. Recommended actions for all stream reaches in California based on outputs of
the watershed prioritization analysis. An interactive map with reach-specific information can
be found at: https://gamma-data-portal-sccwrp.hub.arcgis.com/maps/watershed-prioritization-
recommended-actions-2021-summary/explore (accessed on 23 March 2022).

3.3. Application to Pilot Watersheds

The watershed prioritization framework was applied to six pilot watersheds in central
and southern California. An example of the integration process for the San Juan Creek
watershed is shown in Figure 5. The proportion of intact to degraded stream reaches
varied by watershed but were generally similar to that statewide proportion, with more
agriculturally dominated watersheds in the central coast having a higher percentage of
intact stream reaches than the more urban watersheds in southern California (Table S2).

https://gamma-data-portal-sccwrp.hub.arcgis.com/maps/watershed-prioritization-recommended-actions-2021-summary/explore
https://gamma-data-portal-sccwrp.hub.arcgis.com/maps/watershed-prioritization-recommended-actions-2021-summary/explore
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The proportion of reaches in the pilot watersheds that had elevated stress ranged from
20 to 76% of reaches, with half of the watersheds requiring some sort of recommended
action at more than half of the stream reaches (Figure 6). Management was the most
frequently recommended action category for five of the test watersheds, suggested for up
to 42% of reaches in the San Diego River watershed. The San Lorenzo River watershed
was the only one where more stream reaches required protective action than any other
recommended action (40% of reaches needing protective action, compared with 35% of
reaches with management actions recommended). Overall, most of the degraded streams
were at lower elevations in the six test watersheds, where urbanization was greatest and
levels of stress the highest. Specific management or protective actions were assigned to all
rated reaches based on the recommendations shown in Table 2.
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3.3.1. Ground Truthing the Patterns of Stress

There were relatively few examples of the automated process misidentifying the
levels of stress observed in aerial imagery (either over or under estimating disturbances);
however, there were instances of NHD stream reaches that did not appear in the StreamCat
database. Of the 168,077 stream reaches for California in the 2011 NHDPlus dataset,
the 2020 StreamCat database had metric values for 140,710 of these reaches. Within the
test watersheds, these differences included missing tributaries, gaps between reaches for
some streams, as well as missing reaches within larger braided stream systems. However,
some of the reaches not included in StreamCat were isolated canals or the shoreline of
irregular-shaped lakes and depressional wetlands. The discrepancy between NHD and
StreamCat reaches for the test watersheds ranged from 0% of NHD reaches in the San
Lorenzo River watershed to 13% of NHD reaches in the Salinas River watershed. Similarly,
recommended management actions generally conformed with the expected dominant land
use type (Table 7). Less than 1% of intact stream reaches (indicated by recommendations for
risk reduction or protection) were associated with urban and agricultural settings, whereas
restoration was generally recommended in urban and agricultural landscapes.
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Table 7. Relationship between recommended management actions statewide and predominant land
use based on the National Land Cover Database.

Recommended Action Open Urban Agriculture Total

Restoration 65.0% 11.8% 23.2% 100.0%

Management 95.4% 1.9% 2.7% 100.0%

Protect 99.6% 0.3% 0.1% 100.0%

Risk Reduction 98.7% 0.7% 0.6% 100.0%

The type of stress identified among reaches in the pilot watersheds using the StreamCat
database corresponded with types of disturbances seen in aerial images and NLCD plots.
For each of the six watersheds, streams in areas identified through aerial imagery as urban
(observed as high-density housing, recreation parks, schools, and commercial centers)
were associated with elevated imperviousness, urbanization, and road density, and were
not associated with elevated stress resulting from agriculture. Streams adjacent to plant
nurseries or row crops in relatively uninhabited portions of the watersheds were associated
with elevated stressors such as synthetic fertilizer application and agricultural land, and
not urbanization or imperviousness.

3.3.2. Stream Reach Prioritization

Within the six pilot watersheds, stream reaches were further prioritized based on the
opportunity to leverage existing watershed management plans and on opportunities to
focus on areas subject to high pollution burdens from an environmental justice perspective
(Figure 7). Using the San Juan Creek watershed as an example, a Natural Community
Conservation Plan/Habitat Conservation Plan was identified that had four locations des-
ignated for habitat protection or restoration [26]. Each of the four land parcels identified
in the NCCP/HCP represents key conservation areas to threatened or endangered plant
and animal species and add to the protection of large blocks of natural open space in areas
important for regional conservation. Each of the four conservation projects is located near
streams identified for protection, restoration, or management actions using the watershed
prioritization strategy. Three additional existing opportunities were identified for this
watershed based on the South Orange County Integrated Regional Watershed Management
Plan [27]. These projects represent opportunities that can be used to help further priori-
tize the recommended actions identified for degraded stream reaches in this watershed
(Figure 8).

Of the sixty census tracts in the San Juan Creek Watershed, three had Pollution Burden
scores above the threshold derived for this watershed (Figure 8). This included 52 km
of stream reach with 6 km recommended for management and 14 km recommended for
restoration and management. The indicators contributing to the high Pollution Burden
scores in the three disturbed census tracts included solid waste sites and facilities, hazardous
waste generators and facilities, impaired water bodies, and traffic density. These areas
represent opportunities to focus actions on portions of the watershed where communities
are disproportionately affected by poor environmental quality conditions. Interestingly,
the census tracts with the greatest urbanization in this watershed did not have the highest
overall Pollution Burden scores, suggesting that specific analysis on environmental justice
burdens can be useful for prioritization of management actions.

The Salinas River Watershed presents another example of using existing watershed
management plans to further prioritize stream reaches. In the Salinas River Watershed, 6
of the 106 census tracts had a Pollution Burden score above the threshold derived for the
watershed, with all six census tracts concentrated in the lowest portion of the watershed
(northern-most) near the City of Salinas (Figure 8). All the assessed stream reaches on
the valley floor of this region in the lower watershed were identified for restoration and
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management (Figure 8). Addresses for the relevant regional water management plans
developed for the lower Salinas River Watershed are included in the Supplemental Material.

Each of these plans includes several recommended restoration projects and manage-
ment actions, with some projects providing multiple benefits listed in multiple plans. Carr
Lake Restoration, Salinas to the Sea Floodplain Enhancement, and Upper Gabilan Water-
shed Floodplain Enhancement are three such projects (Figure 8). These three projects can
provide a continuous corridor of surface water quality improvements, flood protection,
habitat enhancement, community recreation benefits, and groundwater recharge benefits
throughout the priority region identified by restoration prioritization analysis. In heavily
managed watersheds such as the Salinas River Watershed, consulting existing plans can
not only further prioritize focus locations in a watershed, but can also refine the type of
restoration and management actions that should be taken to achieve the greatest benefit.
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pollution burden that could be prioritized to benefit communities disproportionately affected by
pollution. Larger versions of these maps are provided in Supplemental Material S3.
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Figure 8. Priority areas in the Salinas River Watershed (top panel) and San Juan Creek Watershed
(bottom panel) based on opportunities to leverage efforts with existing watershed conservation and
restoration plans.

4. Discussion
4.1. Utility of Tools for Watershed Prioritization

In this study, we developed a broadly applicable tool that can aid watershed managers
in prioritizing protection, restoration, and management actions at a watershed scale to help
promote overall watershed health. The prioritization tool leverages readily available data
sources, such as statewide stream condition data based on ambient monitoring programs
and USEPA’s national StreamCat database. As such, the tool can be easily applied to
watersheds across diverse settings and landscapes using basic datasets that are available
nationwide, such as USEPA’s National Rivers and Streams Assessment [28].

Developing this prioritization tool overcomes several traditional impediments to com-
prehensive watershed planning. First, results are provided at the reach scale, providing a
more direct relationship with management actions. Other watershed prioritization tools
use algorithms to provide results at the catchment scale (e.g., HUC 12), which requires as-
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sumptions or interpolation of management actions to specific locations [29,30]. In contrast,
output at the reach scale allows managers to target their actions more easily to specific
locations. Second, the tool provides specific recommendations tied to the most predominant
stressors directly affecting biological condition at each stream location. Moving beyond
general recommendations such as “management” or narrow outcomes such as “prioritiza-
tion for non-point source control” [31] to a broader set of suggestions that remedy specific
stressors helps support more directed and holistic watershed planning. This also increases
the likelihood that stress amelioration will result in improvement of biological communities.
Third, the tool is automated and can be easily applied to any watershed. This provides for
rapid production of initial planning-level maps that can guide additional monitoring and
subsequent in-depth analysis. This would be particularly useful for under-sampled areas
where site-specific condition or stress data are not readily available. Because watershed
planning can be an intensive process that involves data mining, compilation, synthesis, and
manual analysis, the time and cost necessary to complete this process can often deter local
watershed managers from attempting such comprehensive analysis, particularly in areas
where resources or data are limited [30]. The availability of broadly applicable tool may
lower these initial barriers to watershed planning. The tool can also supplement analysis in
areas where local observations and field data are available by serving as an initial screening
tool that can be verified with local data and by helping to provide information where field
observations are not available. For example, the tool can be used to prioritize areas where
formal causal assessment analysis should be conducted [32].

Parsimony in model development was based on a relatively sparse structure for the
random forest modeling and a simple rule-based model for the management prioritization
analysis. A sparse model structure contains the smallest number of covariates that might
explain the greatest amount of variance in the dependent variable. Because this approach
poses opportunities to inform decision-making, data collection, and protection and restora-
tion activities in resource-restricted areas, it can be applied in a variety of settings regardless
of the availability of local data. We recognize that streams and rivers are diverse systems
with complex relationships to their biological communities and their surrounding societies,
but our approach aims to balance this inherent complexity with a level of sparsity that
best supports prioritization of management actions. The indices used in the random forest
model development, ASCI, CSCI, and CRAM, are already examples of this balance of spar-
sity and complexity, combining several raw measures of biotic and physical conditions into
a single metric [14–16]. By collapsing the axes of variability, this approach was designed
to reduce the relative importance of variability in any one raw measure and enable trends
in state-wide index datasets to emerge more clearly. For example, CRAM provided lower
levels of discrimination because it is less sensitive to catchment-scale predictors, yet it
provides a more direct estimation of habitat quality. These dichotomies can be offset by
combining multiple condition indices. In the series of random forest models developed,
we identified multiple shared environmental variables affecting stream condition, namely
impervious and urban land cover as well as road density and crossings with streams which
allows maximum leverage from limited data and improves overall relationships between
stress and condition.

Results of random forest model development for condition assessment underscored
the importance of long-term monitoring data in a variety of stream environments. Regions
that had more data provided more information on which to develop the model and, as a
result, their models explained a greater proportion of the variability in the data (Figures S2,
S4, S6 and S8). Others have also called for increased monitoring as a critical need for future
restoration efforts [33], and our model validation efforts highlighted the value of additional
data, particularly in traditionally under-sampled regions. Similarly, monitoring the effect
of future management actions on stream condition can provide the opportunity to verify
the outputs of the prioritization tool and further refine it over time.

Tool acceptability was further enhanced through inclusive development of the rule-
based model used to determine thresholds and match stressors with management actions.
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All rules and relationships in the models were co-developed and vetted through a statewide
technical workgroup that included agency representatives and practitioners. This work-
group agreed on the approach to establishing thresholds, assigning stressors to mutually
exclusive management categories and identifying specific actions to remedy specific stres-
sors. Past studies have shown that agreement among experts on rule-based models can
be considered equally reliable as models parameterized with empirical observations and
results in higher reliability than subjective or “black-box” approaches [34,35]. Moreover,
ensuring transparency in the development process, including important caveats and limita-
tions of the tool improves confidence in the outcomes and helps achieve consensus on the
appropriateness, logic, and defensibility of the products. Finally, the technical workgroup
agreed that the recommendations provided by the tool should serve as suggestions to be
further evaluated through site-specific analysis.

Reliance on StreamCat for stressor analysis provides a way to easily apply this ap-
proach nationwide using readily available data that are routinely updated. However,
StreamCat is limited in that it only considers certain stressors and neglects potentially im-
portant stressors, such as grazing, timber harvest, some types of mines, and groundwater
extraction. For example, groundwater extraction can severely impact riparian zone and can
lead to catastrophic bank erosion and complete alteration of the stream course [36]. Such
effects can be exacerbated by extended drought. Habitat descriptors based on conditions
prevailing under years of non-extreme conditions may not be sensitive to severe drought, or
effectively point toward the likely management needs associated with the disproportionate
impacts under such conditions. StreamCat also under-represents the effects of aggregate
extraction that can substantially alters stream structure. For example, historic aggregate
mining in several of our pilot watersheds has been a major contributing factor to tens
of meters of stream incision and water table decline, which has further affected stream
conditions [37]. Finally, effects of episodic disturbance that can profoundly affects stream
condition, such as wildfires and floods, are not represented in StreamCat.

Because the analysis was designed to apply at a state scale and relies on readily
available geospatial data layers, it does not account for finer scale, more localized factors,
such as local passage barriers or floodplain encroachment. Once the initial screening
analysis using this approach is completed, it is important for users to account for finer-scale
stress data before making final management decisions. This data may be available from
datasets not represented in StreamCat, but from other regional or local sources.

General patterns of recommended action statewide and in the six pilot watersheds
corresponded to intensity of land uses in predictable ways. Moreover, tool performance
was relatively consistent across the pilot watersheds, suggesting that it should be broadly
applicable to all watersheds in the state. The exception was in the North Coast, where
correlations were lowest. As noted, this may be due to sparser data. It may also reflect
that these riparian systems are affected by variables other those tabulated by the five sets
of standardized data, such as the influences of gorges on stream condition, the role of
large wood logjams and the lingering effects of timber harvesting. In general, sites most in
need of restoration and management were typically lower in the watershed where urban
development is concentrated, or in the case of the Salinas River watershed, were associated
with agricultural areas. High-quality sites recommended for protection were often at the
interface between open space and urban or agricultural areas and were vulnerable due to
elevated stressor levels. In contrast, sites recommended for no immediate action beyond
continued protection were in more remote, less developed portions of the watershed. These
sites should be monitored to determine if stress levels increase to a point where additional
protective measures are recommended or if condition degrades to a level where restoration
or management might be warranted. This is particularly important in consideration of
globally induced changes in temperature, precipitation patterns and fire frequency which
will have greater proportional effect on streams located in higher elevation, more natural
portions of watersheds.
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Most stream reaches in the state (63%) were in the protection category, suggesting
that the prioritization tool was able to successfully identify reaches in greatest need of
management intervention. However, it is important to keep in mind that all stream reaches
are likely are already being affected by shifts in temperature and rainfall patterns associated
with climate change. Moreover, future land use and resource management changes may
pose additional threats. Therefore, every site has some degree of vulnerability and should
be monitored for degradation from climate change, land use and resource management
changes or a combination. Existing statewide monitoring programs could be used to
periodically re-evaluate these “high quality” sites to determine their level of risk and
whether their condition is declining.

Unlike other prioritization tools, the results of this analysis also provide recommenda-
tions for specific actions to help remedy specific stressors (e.g., culvert retrofit in reaches
with high density of road crossings). Observations during ground-truthing generally cor-
roborated recommendations provided by the prioritization tool, suggesting that it can be
broadly applied across watersheds in an automated manner to support initial watershed
planning efforts. Coordination with local watershed plans could allow for additional
prioritization through weighting of stressors based local priorities or ease of management
intervention and provide opportunities s for leveraging of effort and investment to achieve
multiple objectives associated with improving watershed health. Additional prioritization
measures could also be imposed for lower stream reaches near the coast whose condition
may be influenced by mouth conditions where they drain into the ocean. Closing patterns,
and changes to those patterns due to armoring, artificial breaching, changing freshwater
flows, and sea level rise can all affect condition in ways that are not detected through
our analysis. These areas may also have additional environmental justice or community
concerns that could affect how they are prioritized for management.

4.2. Importance of Accounting for Potentially Affected Communities

Regardless of model transparency, analytical results alone cannot always produce
reliable restoration decisions [38]. Decisions need to include consideration of stakeholder
values and community interests and needs. These communities are often closely related
to their local rivers and streams, and they will have different priorities and values based
on both cognitive and emotional perspectives. Many areas may have religious or cultural
significance for indigenous cultures that should be integrated into watershed planning.
In general, restoration efforts have a propensity to prioritize restoration in natural areas
because they are easier to regain ecological functions. However, this narrow ecological
and engineering focus contributes to the exclusion of restoration in areas that can provide
benefits to communities that often lack access to “natural areas” for recreational and
educational benefits [39].

Research in environmental justice has repeatedly noted that scientific information by
itself is not sufficient to indicate the ideal location for projects. Rather, a full consideration
of the expected benefits, and where they accrue, is also important. This can best be
accomplished by expanding restoration considerations beyond the stream itself to the
characteristics and needs of the surrounding communities. In this study, we attempted
to include environmental justice considerations into restoration prioritization using the
CalEnviroScreen dataset. CalEnviroScreen data supplies California communities with
environmental, health, and socioeconomic data pertaining to each census tract, allowing the
community to examine which regions have the highest levels of pollution and population
burdens. Our preliminary analysis showed little correlation between the CalEnviroScreen
indicators and indicators of stream condition (e.g., ASCI, CSCI, and CRAM). At one level,
this suggests that the two assessments are measuring different things (stream condition
vs. condition of the surrounding community). At another level, this suggests a potential
incongruence between ecological and social needs. By prioritizing streams in areas with
the highest overall pollution burdens, we can begin to better incorporate the needs of
under-resourced communities into the restoration prioritization process. Full integration of
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ecological and social issues will ultimately require development of new indicators that more
directly measure ecological aspects of streams that provide social benefit, such as access
to recreational opportunities. Consideration of the broader social benefits of restoration
and management was beyond the scope of this study but is an important area for future
investigation.

5. Conclusions

In this study, we set out to address the call for new methods in stream restoration
prioritization [40], and we successfully developed a series of condition classification mod-
els that make use of large spatio-temporal datasets and recently developed indices to
generate sparse model structures well suited for informing prioritization measures. The
tools produced in this study provide a parsimonious way to spatially prioritize specific
management actions across a watershed, and they provide a series of discrete activities
aimed at collectively improving watershed health. This tool is most appropriately used
to support preliminary screening-level analysis of priority locations and actions to help
restore healthy watersheds. It will be most useful in data-poor areas that lack a critical
mass of detailed site-specific investigations. Moreover, the outcomes likely represent a
“best-case scenario” of condition. Holistic watershed management requires consideration
of the processes and interactions across the watershed such as sediment transport and
continuity for wildlife movement [41,42]. Such finer-scale analysis often reveals additional
stressors that affect condition, but also inform more directed management actions. Ad-
vances in spatial modeling can be applied to future analysis to further prioritize sites
for protection, restoration, or management based on their importance for maintaining or
restoring corridors or linkages or aquatic or riparian organisms [43]. Similarly, areas that
provide processes such as aquifer recharge and sediment generation could be prioritized
based on their position in the watershed. For example, areas that provide coarse sediment
supply necessary to maintain geomorphic stability could be prioritized for protection,
whereas key sediment transport areas could be prioritized for restoration [44]. Reaches
likely to have been affected by episodic events, such as post-fire sedimentation or fire-flood
disturbance, can be identified by overlaying polygons of fire perimeters both to assess
whether adjustments in reach data may be needed, or to simply flag certain reaches as being
prone to occasional pulses of sediment and nutrients [45,46]. Including such positional
considerations in future model or tool development would provide for a more complete
and nuanced approach to prioritizing actions to achieve healthy watersheds.
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